
P5 Mon Help
P5Mon is a CPU monitoring tool for Pentium based machines running Windows 3.1.and Windows 95. It 
displays the activity of the CPU as an oscilloscope-like graph of two user-selectable CPU events.

Introduction

How To:
Use the Toolbar.
Change the Events being monitored.
Pause the Graph.
Speed up or Slow down the graph retrace
Change the Vertical or Horizontal scale.
Cut and paste the graph into another document.

Pentium Architecture Overview

About P5Mon



The ToolBar

Click on the toolbar area you wish to find out about. Alternatively, use the buttons marked << and >> 
above to browse through each help topic about the toolbar.



Introduction
When Intel designed the Pentium™ processor they included hardware support for profiling of software 
and measuring the performance of the CPU. Central to this support are two event counters which can be 
used to collect statistics on various parts of the CPU. Unfortunately, when the Pentium™ Family Users 
Manual was published, Intel reserved the details of these counters and other information and placed them
into a separate supplement which can only be obtained by signing a Non Disclosure Agreement or NDA. 
The justification for this is that the information is `considered Intel confidential and proprietary` and    non-
essential to standard applications.

However Terje Mathisen, a systems architect from Norway, managed to reverse engineer the instruction 
format for accessing the two event counters by disassembling a commercial profiling tool sold by a 
company which had signed the NDA with Intel. He published his results in Byte Magazine in the July 1994
issue [1]. P5Mon was written using the information in this Byte article.



Graph Window
The Graph window displays two traces of different CPU events. One is coloured red and the other is 
coloured blue. The traces show the changes in the values of two internal Pentium profiling counters. The 
vertical scale shows the instantaneous number of events per second. Note that this is not the same as the
absolute number of events between sample, the height of each plotted point is calculated as the 
difference between the sampled events divided by the elapsed time between samples. The elapsed time 
is judged extremely accurately by reading the CPU timestamp counter and dividing by the clock 
frequency. A grid is optionally displayed which divides the horizontal scale into units of 20 sample points 
and the vertical scale into tenths. It is toggled by the Show/Hide Grid button.

Changing the Vertical Scale
The vertical scale rescales itself automatically to fit the order of the number of events being counted. It 
always rescales to a multiple of 1, 2 or 5. If the application window is stretched vertically, the numeric 
value of the top of the scale stays the same but the graph is stretched to fit the new window dimensions.

Changing the Horizontal Scale
The horizontal scale remains constant while the window is stretched horizontally but the depth of the trace
changes. Thus if the window is doubled in horizontal width, the red and blue traces will display a particular
trace for twice as long before it is deleted by the left to right horizontal retrace. To stretch the traces or 
more correctly, to change the visible width between samples use the Magnification buttons. To change the
speed of the traces, alter the Sampling Interval.

Cutting and Pasting the Graph Window
P5Mon does not support Cut and Paste directly but it is still possible to take a screen snapshot by 
pressing <Alt-PrintScreen>. This copies a bitmap image into the clipboard which can then be pasted into 
another document.



Select Red/Blue Graph
This two button pair controls which trace is selected by the Events listbox. Whichever color button is 
pressed then the list box entry shows the event being logged by the corresponding trace which can then 
be changed using the scrollbar.



Pause
This pauses the trace. The same effect can be achieved by pressing the Pause button on the keyboard.



Sampling Interval
This controls the frequency of sampling of the trace. The default is 10 times a second or a 100mS 
sampling interval. 
The shortest interval is 50mS which gives a sample frequency of 20 times a second. The longest interval 
is 2 seconds



Decrease/Increase Magnification
The two buttons represented by magnifying glasses control the gap between each sample point on the 
screen. The smallest gap is 1 pixel, the largest is 8 pixels. The magnifying glass with a plus sign doubles 
the current sample width and the magnifying glass with the minus sign halves it.
The keypad plus and minus buttons have the same effect.



Rescale
The Rescale button causes both traces to be rescaled upwards to maximize vertical resolution on the 
scale. The largest sample value still visible (undeleted by the left to right scan) is used to calculate the 
new scales. This is useful if the 
 Pressing <Ctrl-R> has the same effect.



Equate Red & Blue Scales
Pressing this button causes both traces to be rescaled to the larger value of the two. This is useful for 
judging the relative quantities of two related events. 
e.g. the ratio of Instructions Executed to Instructions Executed in V pipe gives a measure of instruction 
level parallelism.
<Ctrl-E> has the same effect.



Show/Hide Grid Lines
This button toggles the grid lines on the graph window. The grid is divided into tenths on the vertical scale
and 20 sample points on the horizontal scale. Changing the magnification will change the grid width 
correspondingly. 
<Ctrl-G> also toggles the grid lines.



Always On Top
When the Always on Top button is depressed the P5Mon window will remain visible even when you are 
using another application. This feature is useful to see the effect of different applications on the CPU 
without losing the P5Mon window underneath other application windows.
<Ctrl-A> also toggles Always on Top



Processor Info
Pressing the Processor Info button brings up a dialog with information about the CPU itself, including its 
clock speed, Model, Family, Type and manufacturing Stepping level. It also tests for the presence of the 
FDIV instruction bug by checking the equation:
(4195835/3145727)*4195835 - 3145727 = 0



The Pentium Architecture
This guide is not meant to be a definitive reference to the Pentium or its CPU architecture. It is just a brief 
tour of the main features. For more detailed information and explanation of the terms involved there is a 
page of references. 

Some of the principle features of the Pentium CPU Architecture are described in the help topics listed 
below. You may also browse through this guide using the << and >> buttons.

Register Set
Memory Architecture
Integer Pipeline
Floating Point Pipeline 
Integer Instruction Pairing
Floating Point Instruction Pairing
Branch Prediction
On Chip Cache
Instruction Set Extensions
CPU Profiling Extensions
References



Register Set
There are eight 32 bit registers on the Pentium used to hold instruction data and addresses. They are 
more or less general purpose in the sense that for most instructions any of these registers can be used as
an operand. However, each of them has a particular function and some of them are more flexible than 
others. In 16 bit code only the lower 16 bits are normally useable.The registers are called EAX, EBX, ECX
,EDX, ESI, EDI, EBP and ESP. The register names are derived from their usual functions viz : 
Accumulator, Base, Count, Data, Source Index, Destination Index, Base Pointer and Stack Pointer. The 
lower 16 bits of the first four registers can be addressed separately and are called AX, BX, CX, DX. Within
the lower 16 bit words of these registers the upper and lower bytes are named AH & AL, BH & BL, CH & 
CL, DH & DL.



Memory Architecture
A detailed discussion of the x86 memory architecture is beyond the scope of this document, for more 
information, the reader is referred to one of the many books on this topic.

Segmentation
All members of the x86 family support segmented memory. This is a form of addressing memory whereby 
all addresses are presented in the form of offsets from a segment base address. The address calculated 
by adding an offset to a segment base is called a linear address. For 16 bit code and code that retains 
compatibility with the Intel 80286 the segment base addresses are held in the segment registers CS, DS, 
ES, FS and GS. In 32 bit code the segment registers hold selectors. Selectors are offsets into arrays of 
data structures called descriptors. The descriptors hold the base addresses and other information 
regarding the access rights the page, whether it holds instructions or data etc.

Physical Memory and the Paging Unit
In Windows 3.1, Windows 95, Windows NT, Linux and other operating systems, the linear address is 
translated into a physical address using the paging unit. This allows the processor to maintain the illusion 
that there is more physical memory available for programs that actually exists by using hard disk storage 
for linear memory pages that are not currently needed. When the processor needs a page that is not 
currently in memory, the processor must fetch it from disk. The paging unit maintains data structures in 
memory called Page Tables which indicate the state of individual pages. Page Tables are composed of 
Page Table Entries (PTEs) which are used to hold the physical addresses corresponding to linear ones. 
Because the page size is 4 kBytes, the lower 12 bits of a linear address are the same as its correponding 
physical one. The remaining bits of the address are used in a lookup mechanism involving the Page 
Tables. 

Translation Lookaside Buffer
In order to avoid a costly page table lookup for each memory access, the processor keeps a cache of 
recently used PTEs. This is called the Translation Lookaside Buffer or TLB.



Integer Instruction Pipeline
In common with its predecessor, the 486, Pentium™ instruction execution is pipelined. The structure of 
the 486 pipeline is shown below.

There are five pipeline stages which function as follows:
PF Prefetch the next instruction from the on-chip cache or memory.
D1 & D2 Decode the instruction.
EX Execute instruction in the ALU and access the Data cache
WB Write back the results and modify the processor state.

Because the Pentium™ is a superscalar processor capable of issuing two instructions in parallel there are
two five stage pipelines.

The Pentium has two independent prefetch buffers 



Floating Point Pipeline
Pipelining floating point instructions is similar to that for integer instructions for the first five stages:
· PF Prefetch
· D1 Decode
· D2 Generate Address
· EX Read operands from memory and/or registers. Convert internal FP data to external memory 
format and write to memory.
· X1 FP Execute stage one. Convert external memory data to internal FP format and write to FP 
register file. 
· X2 FP Execute stage two
· WF Round result and write to FP register file.
· ER Report errors and update FP status word.
In addition to these stages, the Pentium can write bypass the register file in    stages X1 and WF, passing 
the result directly to EX stage of a following instruction.
With pipelining it is possible to achieve a throughput of 1 per clock cycle for certain floating point 
instructions including FMUL, FADD, FSUB, FST(i) and FLD.
Generally speaking, only one floating point instructions can be executed at a time. The second instruction 
pipe is not used for pairing floating point instructions except under limited circumstances.
See Floating Point Pairing Rules.



Integer Instruction Pairing Rules
The Pentium can issue two instructions subject to the following rules:
1) Both Instructions must belong to the following subset of simple instructions:
· mov reg, reg/mem/imm
· mov mem, reg/imm
· alu reg, reg/mem/imm
· alu mem. reg/imm
· inc reg/mem
· dec reg/mem
· push reg/mem
· pop reg
· lea reg/mem
· jmp/call/jcc near
All these instructions are implemented by hardwired logic on the Pentium and thus do not require 
microcode to execute.
2) There must be no register dependencies between them. There are two types of dependencies, read-
after-write (RAW) and write-after-write. Here is an example of a RAW dependency :

mov ecx, eax
inc ecx

3) In addressing memory, neither instruction can use both a displacement and an immediate value
e.g. The following instruction cannot be paired:

add [eax +4], 012345678h
4) Instructions with prefixes (e.g. segment override, Address size) can only occur in the U pipe. The 
exception to this is the near conditional jump instruction    JCC (prefix 0fh)



Floating Point Instruction Pairing Rules
Floating point instructions cannot generally be paired. The exception to this is with the new FXCH floating 
point exchange instruction which can be paired if it immediately follows one of the following types of 
instructions: FLD single/double, FLD ST(i), FADD, FSUB, FMUL, FDIV, FCOM, FUCOM, FTST, FABS, 
FCHS.

The FXCH instruction can be used to overcome the stack bottleneck caused by the requirement that each
floating point instruction have one source operand indexed from the top of the stack.

Floating point instructions cannot be paired with integer instructions. When two floating point instruction 
are paired the pair should not be followed by an integer instruction. The integer instruction will stall for one
clock cycle or four clock cycles if the processor determines that the floating point pair are likely to 
generate a floating point exception (e.g. overflow, underflow). They should pipeline with integer 
instructions though, because the FPU logic is separate from the integer execution unit.



Branch Prediction
Every time the Pentium executes a branch instruction it stores the target address in a buffer. If the branch 
is encountered again, the instruction prefetch logic tries to guess the next instruction address based on 
the outcome of the last time the branch was executed. If it guesses correctly, the branch will take only one
cycle. If it is incorrect, the prefetch queues are flushed and refilled from the correct address. This incurs a 
penalty of between 3 and 5 clock cycles. The Pentium can store up to 256 branches in its Branch Target 
Buffer or BTB.



On Chip Cache
A cache is a small area of fast memory for keeping frequently accessed data. The trade-off with normal 
memory is the high cost of fast memory. In the case of the Pentium, the on chip cache is an expense of 
chip area and transistors. The cache does not reside in a separately addressed area. Rather there is 
sophisticated logic used to copy the most frequently (or more recently) used regions of memory into the 
cache and copy them back when they are no longer needed or more likely when the precious resources 
of the cache are needed to store a more urgent datum.

Cache Terminology
Writethrough & Writeback
With a Writethrough cache all updates to addresses that hit in the cache are performed on main memory. 
Depending on the cache implementation, the cache line is either updated or invalidated. With a writeback 
cache, the updates are performed on the cache line alone. These two terms only apply to data cache 
lines, code is normally read only.

Cache Line size 
This is the minimum unit of memory that the cache loads and stores. On the Pentium this is 32bytes or 4 
memory accesses via its 64bit bus. It is always accessed on a cache line boundary which means that for 
the Pentium, the beginning of the cache line is always accessed with address lines a4 - a0 = 00000bin 
and the last byte of the cache line is accessed with a4-a0= 11111bin

Address Tag and Set number: 
When a physical address is presented to the cache, the cache uses the address bits to determine 
whether or not the cache line resides in the cache or in main memory. It does this by dividing the 
remaining address bits (a31 - a5 on the Pentium) into two fields. The low order field is called the Set 
number and this is used as an index into a linear array of cache lines (See diagram below). The upper 
field is called the Address Tag compared with the Tag stored with the cache line.

Direct Mapped Vs Set Associative Caches
The operation of a Direct Mapped cache is shown above. For a Set Associative cache the whole system 
is multiplied by two, three or more. Instead of comparing with one cache tag, the address tag is compared
with a number of tags in separate banks. Each bank operates like a direct-mapped cache in its own right. 
In addition, when a new datum replaces an old one in the same set, it uses a algorithm to determine 
which of the two (or four in a four -way set associative cache) it should replace. One such algorithm is the 
Least-Recently-Used or LRU algorithm which tries to replace the cache line which whose last reference is
the furthest back in time. A diagram of a two-way set associative cache is shown below.



 
The Pentium on chip cache is 16Kbytes in size and is divided into an 8Kbytes instruction or code cache 
and 8Kbytes data cache. Each cache is organized as a two way set associative cache.



Data Cache 
The Pentium data cache is 8Kbytes in size and is two-way set associative. There are 128 sets of two 
32byte lines. Each cache line has for read/write ports, one for each 4 byte bank. If two paired instructions 
try to access the same bank, a one clock cycle delay is incurred. This is called a Bank Conflict.

MESI Cache Coherency
The data cache supports the MESI protocol. It stands for Modified, Exclusive, Shared and Invalid which 
are the names of the four states of a data cache line in a multiprocessor configuration. A cache coherency
protocol is an algorithm which ensures that if one CPU reads a datum, subsequent reads or writes to the 
same datum by other CPUs will access the correct data even if the only copy of the data is in one CPUs 
cache. Cache coherency protocols are quite involved. For a detailed explanation of MESI and other 
algorithms see [3] & [4].



Code Cache
The Pentium instruction cache organization is the same as for the data cache, 8Kbytes, two way set 
associative. Not all instructions fetched are executed due to the effects of branch prediction. 



Instruction Set Extensions
A number of new instructions have been added to the 486 instruction set architecture for the Pentium.

CMPXCHG8B Compare and Exchange 8 Bytes
This instruction compares the contents of register EDX:EAX with memory and swaps them if they are 
equal. It is useful for implementing synchronisation in multiprocessors because it supports the LOCK 
instruction prefix.

RDTSC Read Timestamp Instruction
The Read Timestamp instruction (RDTSC) copies the contents of a 64 bit clock cycle counter into 
registers EAX and EDX and is a convenient way of profiling code. The counter is reset on power up and 
processor reset. The instruction encoding is 0f31h
The following macro can be used in Windows Protected Mode 16 bit code:

#define TIMESTAMP(var)  __asm \
{ \
_asm _emit 0x0f \
_asm _emit 0x31 \
_asm _emit 0x66 \
_asm mov word ptr var, ax \
_asm _emit 0x66 \
_asm mov word ptr var[+4], dx \
}

and is used thus:
DWORD timst[2];

TIMESTAMP(timst);

CPUID CPU Identification Instruction
This useful instruction allows the programmer to identify the make and model of the CPU and the extra 
features it supports. Its output is controlled by register EAX. If EAX contains 0hex when CPUID is 
executed, the ASCII string representing the CPU vendor is placed into
registers EBX, ECX, EDX. EAX contains an integer representing the highest input value to the instruction.
This is currently 1hex. For Intel processors, the vendor string is GenuineIntel. If CPUID is executed with 
1hex in EAX details about the CPU model, family, type, stepping level (revision) and features are returned
in EAX and EDX. 
The instruction encoding is 0fa2hex. In 16bit code the upper 16 bits of 32 bit registers can be accessed 
using the ADRSIZE instruction prefix.
The following code demonstrates how to use CPUID from 16 bit code. It compiles using Microsoft Visual 
C++ 1.5. For 32bit code, remove the _emit 66h lines and change cx to ecx, ax to eax etc.

// First Get Vendor Identification String 
// For Intel Pentiums, the string "GeniuneIntel" is 
// returned in registers ebx, ecx, edx.
char pszVendor[13];
DWORD dwCPUIDBits;
DWORD dwFeatures;
UINT  nModel;
UINT  nStepping;
UINT  nFamily;
UINT  nType;

__asm
{
    _emit 66h



    xor ax, ax
    _emit 0fh       ;
    _emit 0a2h      ; CPUID = 0fa2h
    _emit 66h       ; prefix ADRSIZE converts mov from bx to mov from ebx 
in 16 bit code
    mov word ptr pszVendor, bx
    _emit 66h       ; 
    mov word ptr pszVendor+4, dx
    _emit 66h       ;
    mov word ptr pszVendor+8, cx
    _emit 66h       ; 
    xor ax, ax
    mov ax, 1
    _emit 0fh
    _emit 0a2h      ; CPUID
    _emit 66h       ; ADRSIZE
    mov word ptr dwCPUIDBits, ax
    _emit 66h
    mov word ptr dwFeatures, dx
}

pszVendor[12] = 0;
nType = (int)((dwCPUIDBits & 0x00003000) >> 12); // 0 = Normal,
                                                 // 1 = Overdrive
                                                 // 2 = Dual CPU
nFamily = (int)((dwCPUIDBits & 0x00000f00) >> 8);// 5 = Pentium
                                                 // 6 = P6?
nModel = (int)((dwCPUIDBits & 0x000000f0) >> 4);
nStepping = (int)(dwCPUIDBits & 0x0000000f);

RDMSR Read Machine Specific Register
In addition to the registers found on the 486, the Pentium includes a number of extra registers (MSRs) 
which are unique to the Pentium and subject to change in future Intel processors. These registers are all 
64bits in width and they are read and written by two new Pentium instructions RDMSR and WRMSR. 
RDMSR is used to read the registers and is used as follows: RDMSR puts the 64bit value of the MSR 
selected by the value of ECX into the EDX:EAX registers. Intel documents the values 03h and 0fh but 
the other values are reserved under the terms of the Intel NDA. Some of the other legitimate values of 
ECX have been determined and published in Byte Magazine [1]. The instructions are privileged and 
cannot be executed from user mode code. P5MON uses RDMSR and WRMSR to read the CPU profiling 
counters. Although P5MON.EXE is a standard Windows application, it relies on a VxD, P5MON.386 which
performs the actual reading of the counters at a higher privilege level. The instruction encoding is 0f32h.

WRMSR Write Machine Specific Register
WRMSR writes the contents of registers EDX:EAX to the machine specific register selected by ECX. In 
common with RDMSR, it is a privileged instruction. The instruction encoding is 0f30h.

RSM Resume from System Management Mode
System Management Mode is a new operating mode on the Pentium. It is intended for uses such as 
power management in portables and security functions. SSM is entered due to a hardware signal to the 
CPU. RSM causes the processor to leave SSM and restore its state.



CPU Profiling Extensions
The Pentium includes support for both hardware execution tracing and software profiling. Central to this 
support is the provision of two profiling counters which can be set to count one of 38 different CPU 
events.

Profiling Counters
Two of the Machine Specific Registers (MSR 12h & MSR 13h) are dedicated profiling counters whose 
contents are controlled by MSR 11h. MSRs are accessed using    the RDMSR and WRMSR instructions. 
The least significant 16 bit word of MSR11h controls MSR12h and the next most significant 16bit word 
controls MSR13h. Each 16bit word breaks into a number of bit fields. Bits 0-5 select which event to select 
according to the list below. Bit 6 selects enables counting of    events while the processor is executing in 
Rings 1,2 or 3. Bit 7 selects enables counting in Ring 3. If bit 8 is clear, the counter will count events and if
it is set it will the count clock cycles the events take. The function of bits 9-15 is unknown. For more 
information on how to use these counters refer to Byte Magazine July 1994 [1].

Bit 0-5 Event
0                   Data Reads  
1                   Data Writes  
2                   Data TLB Misses  
3                   Data Read Misses  
4                   Data Write Misses  
5                   Write to E or M lines  
6                   Data Cache lines written back  
7                   Data Cache Snoops  
8                   Data Cache Snoop Hits  
9                   Memory Accesses  
A                   Bank Conflicts  
B                   Misaligned Data Accesses  
C                   Code Reads  
D                   Code TLB Misses  
E                   Code Cache Misses  
F                   Segment Register Loads  10 UNKNOWN
11 UNKNOWN
12                 Branches  
13                 Branch Target Buffer Hits  
14                 Taken Branches or BTB Hits  
15                 Pipeline Flushes  
16                 Instructions Executed  
17                 nstructions Executed in v pipe  
18                 Bus Utilization  
19                 Pipe Stalls - Write Backups  
1A                 Pipe Stalls - Data Memory Reads  
1B                 Pipe Stalls - E/M Hits  
1C                 Locked Bus Cycles  
1D                 I/O Reads or Writes  
1E                 Noncacheable Memory References  
1F                 Address Generation Interlocks  
20 UNKNOWN
21 UNKNOWN
22                 Floating Point Operations  
23                 Breakpoint 0 matches  
24                 Breakpoint 1 matches  
25                 Breakpoint 2 matches  
26                 Breakpoint 3 matches  



27                 Hardware Interrupts  
28                 Data Reads or Writes  
29                 Data Cache Misses  



Processor Events
There are 38 different types of event that can be monitored.

Data Reads
Data Writes
Data TLB Misses
Data Read Misses
Data Write Misses
Write to E or M lines
Data Cache lines written back
Data Cache Snoops
Data Cache Snoop Hits
Memory Accesses
Bank Conflicts
Misaligned Data Accesses
Code Reads
Code TLB Misses
Code Cache Misses
Segment Register Loads
Branches
Branch Target Buffer Hits
Taken Branches or BTB Hits
Pipeline Flushes
Instructions Executed
Instructions Executed in v pipe
Bus Utilization
Pipe Stalls - Write Backups
Pipe Stalls - Data Memory Reads
Pipe Stalls - E/M Hits
Locked Bus Cycles
I/O Reads or Writes
Noncacheable Memory References
Address Generation Interlocks
Floating Point Operations
Breakpoint 0 matches
Breakpoint 1 matches
Breakpoint 2 matches
Breakpoint 3 matches
Hardware Interrupts
Data Reads or Writes
Data Cache Misses



Data Reads
All data requests are made through the processors Data Cache. All data requests not found in the cache 
are satisfied by cache line fills unless the addresses are determined to be Noncacheable by the page 
table entries or by the hardware memory interface. Cache line fills can be can be monitored by setting 
one of the traces to count Data Read Misses. 



Data Writes
The Pentiums Data Cache can be configured to be writethrough or writeback. In software, setting the 
Page-WriteThrough    (PWT) bit in each page table entry can declare regions of memory to be writethough
or writeback on a page by page basis. When the Page Cache Disable (PCD) bit of the page    table entry 
is set then all caching is disabled for that page. In hardware, holding the WB/WT#    (cache 
writeback/writethrough select) pin low during a cache line fill causes subsequent writes to that line to be 
writethrough. Obviously, a writeback cache yields higher performance but it is more difficult to implement. 
Some of the earlier Pentium motherboards are writethrough only. You can see if this is the case by setting
one trace to count Data Writes and the other to count Data Write Misses. If the graphs are equal then the 
data cache is hardwired to be writethrough.



Data TLB Misses
This counts the number of accesses to data pages that cause a miss in the page table entry lookup 
system, specifically in the Translation Lookaside Buffer. The penalty is an extra memory access or two to 
find the correct page table entry (PTE).



Data Read Misses
Data Read Misses are caused by read accesses to data not resident in the Data Cache. Read misses 
cause a cache line fill if the line is cacheable.



Data Write Misses
A Data Write Miss is caused by:

1. an update to a datum not resident in the Data Cache . 
2. an update to a page declared writethrough by setting the PWT bit in its Page Table Entry.
3. an update to a page declared Noncacheable by setting the PCD bit in its page table entry.
4. An update to a cache line declared writethrough by holding the WB/WT# pin low at the time of 
cache line fill.

Data Write Misses do not cause cache line fills.



Write to E or M lines
This is only relevant in multiprocessor configurations. The processor drives the E(xclusive) or M(odified) 
pins in response to an inquiry cycle from another processor that hits a cache line that is modified or is 
about to be modified. In Windows 3.1 or Windows 95 these events never occur. See MESI cache 
coherency.



Data Cache lines written back
Data Cache lines are written back in response to one of the following events:

1. A Data Read to a cache line that conflicts with a modified line in the cache.
2. When the processor executed the WBINVD (Write Back and Invalidate) instruction.
3. A Snoop Hit to a modified cache line. This is only relevant in multiprocessor configurations.



Data Cache Snoops
A Data Cache Snoop is a request by another processor to check if a cache line is resident in the Data 
Cache. See MESI cache coherency.
This is only relevant in multiprocessor configurations.



Data Cache Snoop Hits
When a second CPU requests a cache line that hits in the first processors Data Cache this is called a 
Snoop Hit. See MESI cache coherency.
This is only relevant in multiprocessor configurations. 



Memory Accesses
This is the sum of Data Reads, Data Writes and Code Reads.



Bank Conflicts
A Bank conflict occurs when two instructions, one in each pipeline try to access the same bank in the 
data-cache. It causes a one clock cycle in the V pipe.



Misaligned Data Accesses
A Misaligned Data Access occurs when the processor requests a datum which crosses an even address 
boundary. Intel documentation states that a misaligned access incurs a three cycle clock penalty.

Unlike code for the 486, aligning code on cache line boundaries has no great effect on system 
performance. 



Code Reads
This is total number of reads to code pages. Note that this is not the same as the number of instructions 
executed. Neither does the Pentium execute every instruction that it fetches because it will prefetch code 
cache lines ahead of the current Program Counter value predicting branches where necessary using the 
Branch Target Buffer.



Code TLB Misses
This counts the number of accesses to code pages that cause a miss in the page table entry lookup 
system, specifically in the Translation Lookaside Buffer. The penalty is an extra memory access or two to 
find the correct page table entry (PTE).



Code Cache Misses
Instruction fetches that miss in the Code Cache cause a cache line fill.



Segment Register Loads
The 486 and the Pentium hold the descriptors referred to by the segment registers in hidden registers on 
chip to minimize memory accesses. Changing the contents of a segment registor causes the 
corresponding descriptor to be loaded from memory. Because descriptors can be up to 48 bits in length, 
this can be an expensive operation. Segment register loads should therefore be minmized. Accessing 
FAR pointers in 16 bit code for Windows 3.1causes a segment register load.



Branches
A branch is an instruction which transfers execution from one contiguous sequence of instructions to 
another. Branches can be conditional, and are taken depending on the outcome of preceding instructions 
or unconditional which are always taken. The Pentium tries to predict the outcome of conditional branches
using its Branch Target Buffer. Branch instructions include: Jcc (Conditional Jump) JMP and CALL.



Branch Target Buffer Hits
This counts the number of Branches predicted (correctly or incorrectly) by the Branch Target Buffer.



Taken Branches or BTB Hits
This is a count of Branches predicted correctly by the Branch Target Buffer.



Pipeline Flushes
A Pipeline Flush is a clearing out of the instruction prefetch buffers. They are caused by certain external 
events and instruction sequences.



Instructions Executed
The Pentium is a superscalar microprocessor which means that it can execute more than one instruction 
at once. It can do this because it has two instruction pipelines. If the instruction sequences are scheduled 
to take advantage of this feature, taking into account its limitations, it is possible to achieve an throughput 
greater than one instruction per clock cycle. In practice, however, this is unlikely to be sustained for more 
than a few milliseconds.



Instructions Executed in V Pipe
The second instruction pipeline can only execute certain instructions. Intel calls these simple instructions. 
They are characterised by the fact that they are all implemented by hardwired logic and thus do not 
require microcode to execute. This makes them easy to pipeline. Intel chose these instructions as the 
ones which are most often executed and which can be implemented easily to spend only one clock cycle 
in the Integer Pipeline. See Integer Instruction Pairing Rules for a list of simple instructions.



Bus Utilization
This is a count of clock cycles during which the processors external memory bus is in use. Thus if you 
have a 60Mhz Pentium and measure Bus Utilization measures at 40Million/second the % Bus utilization is
66%.



Pipe Stalls - Write Backups
The Pentium buffers writes to memory to increase instruction execution. This means that it does not wait 
for the write to complete before starting a new instruction. If, however, an instruction tries to write a datum
when the write buffer is full, it must stall in the WB stage of the pipeline while the write buffer completes 
any pending memory writes.



Pipe Stalls - Data Memory Reads
If an instruction requests a datum which is not in the data cache Cache, it must stall its pipeline while it 
waits for that data to read from external memory. In contrast, if it is writing a datum that is not in the cache
it buffers the write and continues execution.



Pipe Stalls - E/M Hits
This is only relevant in multiprocessor configurations. If the CPU requests a datum which is in the prefetch
stage of another CPUs pipeline, the first CPU stall its pipeline while it waits for the data to be read from 
the second CPUs data cache. It monitors the Exclusive/Modified pins to determine this. See MESI Cache 
Coherency.



Locked Bus Cycles
Locked bus cycles occur when the instruction being executed is prefixed by the LOCK instruction. The 
only instructions for which this is relevant are those that perform a Read-Modify-Write operation. The 
processor will activate the LOCK# signal ensuring that no other entity can read or write the data before 
the instruction completes. This feature is useful in multiprocessor configurations where it allows software 
locks and semaphores to be implemented easily.



I/O Reads or Writes
In common with every member of the x86 family, the Pentium has a separate I/O address space 
accessed by IN and OUT instructions. There are 65536 I/O address locations. Nearly every PC peripheral
card and motherboards is controlled using I/O instructions.



Noncacheable Memory References
Regions of memory can be noncacheable for a variety of reasons. If the region represents a memory 
mapped I/O device, such as video memory it must be noncacheable.
Authors Note: I have not determined if this event includes references to areas of memory declared 
uncacheable in software by setting the PCD bit in the page table entry or if the cache is diasabled in CR0



Address Generation Interlocks
An Address Generation Interlock (AGI) occurs when a CPU register is used as a base or an index to for 
an instruction that accesses memory and was modified by a previous instruction. This effect is caused by 
the nature of the Pentium instruction pipeline. An AGI can be caused by an instruction which modifies the 
register up to three instructions behind the current one.

The following instruction sequences illustrate where AGIs do and do not occur:

Example 1:
add  ecx, 4
mov  eax, [ecx]

In this example, register edx is modified one instruction before it is used as an address register

Example 2:
mov  bp,ax
mov  ax,[ebx]
mov  dx, 2[bx]
mov  -30[bp],ax

Here, use of the bp register causes an AGI despite the fact that the modifying instruction occurs three 
instructions further back in the instruction stream.

Example 3:
add esp, 4
pop ebx

Here the stack pointer (esp) is implicitly read and written by the pop instruction. 
Push and Pop cause AGIs if they occur after an instruction that modifies register esp. However, the 
reverse is not true:

Example 4
push ebx
mov  eax, esp   // No stall occurs here



Floating Point Operations
Floating point instructions are only rarely used by standard Windows applications but are essential for any
engineering design or CAD work. With proper FP instruction scheduling Floating Pairing    it is possible to 
attain a sustained throughput comparable to RISC processors. See [7]. Setting one of the profiling 
counters to count Floating Point Operations does not count all FP instructions, only those which require 
numeric calculation. Thus FLD, FSTP, FXCH and other FP instructions which do not perform any numeric 
calculation are not counted. Only FADD, FSUB, FMUL, FDIV, FCOM and other `true` FP instructions are 
counted.



Breakpoint 0-3 matches
The Pentium has support for for hardware breakpoints, registers that hold linear addresses of points in 
code where the CPU will trap to a debugger. These can be enabled or disabled. If disabled, the profiling 
registers can be set to count breakpoint matches without stopping processor execution thus counting the 
how often a sequence of instructions is executed.



Hardware Interrupts
Hardware interrupts can come from a number of sources:
1) Clock ticks, once every 20 milliseconds in Windows 3.1
2) Mouse, Keyboard. Parallel and serial ports. (see the effect of moving the mouse while monitoring 
Hardware Interrupts.)
3) Disk Drive reconnects and other I/O involving DMA.



Data Reads or Writes
This is the sum of Data Memory accessed via the Data Cache. If one trace is set to count Data Reads or 
Writes and the other is set to count Data Cache Misses, the Data Cache hit rate can be estimated.



Data Cache Misses
This is the sum of Data Read Misses and Data Write Misses. Data read misses cause Data Cache line 
fills but data write misses are directed to memory without updating the cache. If one trace is set to count 
Data Reads or Writes and the other is set to count Data Cache Misses, the Data Cache hit rate can be 
estimated.
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About P5Mon
The P5Mon application is in two parts. The upper part is the P5MON.EXE Windows application which 
includes the user interface, toolbar, graph window etc. The lower part is P5MON.386, a Windows Virtual 
Device Driver (VxD) which performs the actual reading of the profiling counters. A VxD is necessary 
because the Pentium profiling counters can only be accessed from Ring 0 (Kernel) level code.

Uncertainty Principle - Impact of P5Mon on its own measurements
P5Mon is relatively unintrusive on CPU activity. The core of the program is a loop which processes 
WM_TIMER messages and on a Gateway P5-90 it takes about 130,000 clock cycles to process each 
message with the Grid visible and little less if the grid is not shown. For the worst case, testing a 60mhz 
CPU with a sample interval of 50 mS the load imposed by P5Mon would be about 5%.

Using P5Mon with other Intel Processors
This program is uses Pentium CPU specific registers and will not work on a 386 or a 486. It has not been 
tested on the Nexgen 586, AMD K5 or Cyrix M1 CPUs but it is highly unlikely that it will work. It will warn 
the user and prompt her to continue if it detects a processor that is not a Pentium family processor but 
supports the CPUID instruction and might be a Pentium successor such as the P6. If this is the case and 
if Intel preserves the same mechanisms for accessing the profiling counters then P5Mon might display 
meaningful information. Owing to advances in CPU architecture, it is doubtful that all the event selections 
will map to the same CPU events in future Intel processors. The user proceeds at her own risk.

Windows NT
Because P5MON.EXE depends on a Windows 3.1/Windows 95 specific device driver, it cannot be run on 
Windows NT. A Windows NT device driver is the subject of future work.

P5MON.386
P5MON.386 is a Windows VxD which allows protected mode programs running under Windows 3.1 and 
Windows 95 to access the Pentiums profiling counters. If you would like to use P5MON.386 to profile your
own Windows application software, email me at poc@maths.tcd.ie for the API. There is no fee, but I 
would like some feedback.

Licensing
P5Mon is Freeware (Smile!). No license is required to use or distribute P5Mon. You must, distribute it 
unaltered, including the following files: P5MON.EXE, P5MON.386, P5MON.HLP (this file) and 
README.TXT. You may not sell P5Mon or distribute it for commercial gain. If you find this program useful
or if you find any bugs please let me know by email.

poc@maths.tcd.ie
Philip OCarroll 
22 April 1995




